AOE/ESM 4084 "Engineering Design Optimization" Optimization of Unconstrained Problems with N-Variables

• Random Search

• One of the most inefficient but easiest to implement search methods for *N*-dimensional optimization problems,

$$x_i = x_i^l + r(x_i^u - x_i^l)$$

•where x_i^l and $\overline{x_i^u}$ are the lower and upper bounds on the design variables, respectively, and *r* is a real random number between 0 and 1.0.

- One-Dimensional Minimization
 - Most n-dimensional search algorithms use one dimensional minimization to determine the minimum along a specified direction,

$$\boldsymbol{x} = \boldsymbol{x}^q + \boldsymbol{\alpha} \boldsymbol{d}^q$$

•where x^q is the current point d^q is the direction vector at that point, and α is the variable which determines how far one needs to move along d^q to reach minimum.

• The function to be minimized, f(x), can now be expressed in terms of the variable α .

Minimize
$$f(\mathbf{x}) = f(\mathbf{x}^q + \alpha \mathbf{d}^q) = f(\alpha)$$

at minimum $\alpha = \alpha^*$

- Methods for 1-D Minimization
 - Bracketing
 - Polynomial Approximations
 - Golden Section Search

• Bracketing (Fig 2-11, Vanderplaats)

- •We assume that the solution lies in the positive domain, and the function has a minimum.
- •Initialize $\alpha_L = 0.0$, small $\Delta \alpha_a = (1 + \sqrt{5})/2$ (Gold. Sect. Ratio), and α_{max} .
- •Compute lower and upper bound values of the interval and the function at those points: $f_L = f(\alpha_L)$, $\alpha_U = \alpha_L + \Delta \alpha$, and $f_U = f(\alpha_U)$
- •If $f_U > f_L$, minimum is bracketed, exit. Other wise,
- •Let $\alpha_l = \alpha_U$ and $f_l = f_U$. Compute $\alpha_U = (1+a)\alpha_l$ a α_L
- •If $\alpha_U > \alpha_{max}$, exit unbounded.
- •If not, compute $f_U = f(\alpha_U)$.
- •If $f_U > f_I$, minimum is bracketed, exit

•If not, let $\alpha_L = \alpha_I$ and $f_L = f_I$, and go to 5th bullet to repeat the process.

• Polynomial Approximations

- •Evaluate the function to be minimized and possibly its derivatives at several points and then fit a polynomial of desired order to those points.
- •Depending on the order of the polynomial, the minimum of the polynomial can easily be evaluated, and would produce a good estimate of the minimum of the actual function.
- •Different possible approximations and the information needed
 - •2-Point Quadratic: f_1, f_2 and either f'_1 or f'_2
 - •3-Point Quadratic: f_1, f_2 and f_3
 - •3-Point Cubic: f_1, f_2, f_3 , and derivative at one of the points
 - •4-Point Cubic: f_1, f_2, f_3 , and f_4

Golden Section Search

- •Assume the minimum is bracketed between α_L and α_U , and the function is unimodal in the interval.
- •Compute 2 intermediate points: $\alpha_I = \alpha_L + \tau (\alpha_U \alpha_L)$, $\alpha_2 = \alpha_U \tau (\alpha_U \alpha_L)$ where $\tau = 1 - 1/a = (3 - \sqrt{5})/2$ and a = Golden Section Ration
- •Either α_1 or α_2 will be the new bound on the minimum
- •If $f_1 > f_2$, then α_1 forms the new lower bound, replacing α_L
- •If $f_2 > f_1$, then α_2 forms the new upper bound, replacing α_U
- •The remaining point will be either α_1 or α_2 depending on the case above
- •A new α_1 or α_2 and associated function value will be computed by using the equations above